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THE THEORY OF RESONANCE INTERACTION OF TOLLMIEN-SCHLICHTING WAVES 

A. P. Khokhlov UDC 532.526 

The resonance interaction of eigenoscillations of a boundary layer is treated by the 
method of matched asymptotic expansions. It is well known (see for example, [i]) that this 
is the weakest nonlinear effect in amplitude, following from the linear stages of disturbance 
evolution and playing an important role in the transition from laminar to turbulent boundary 
layer. The theoretical study of the effect started with [2-4], and was later extended by 
many authors [5-8]. 

In the present study the weakly nonlinear evolutionary equations are derived within the 
limit of large Reynolds numbers, and the resonance interaction is not assumed ahead of time, 
but is derived directly from the equations. 

The disturbance evolution is treated within the free interaction theory, i.e., one for- 
mally uses as original equations the three-dimensional nonstationary boundary layer equations 
with self-induced pressure, controlling the flow in the boundary region of the boundary layer. 
Three-wave resonance has already been investigated within this statement of the problem in 
the high-frequency limit [8], but without including the effect of the critical layer, which, 
as shown below, plays an important role. This is related to more marked features in a three- 
dimensional critical layer, while Smith and Stewart [8] obviously based their conclusion con- 
cerning "passivity" of the critical layer on investigation results for the two-dimensional 

case. 

The discussion is divided into two parts: in the first we derive the evolution equations 
by the method of matched asymptotic expansions, and in the second these equations are solved 
for problems without initial conditions, and the results obtained are briefly discussed. 

I. The starting equations consist of the three-layer scheme. The detailed derivation 
and characteristic orders of magnitude are given, for example, in [9], therefore we do not 
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dwell on them. We write down the basic equations: 
0~ av ~ au: 
= ~ O; (1.1) ~ z  Oy ' 0;  

~ a~ o~ o~L o,  o2u ( t .  2 )  
o-F+u~ + v ~ §  + ~ = 0y-r; 

O~ O~ . Ow O,v Op 02a ( 1 . 3 )  

~=w=O for g=0: (1.4) 

u = O  for y = 0 ;  ( 1 . 5 )  

It--y=F(~, z, t)+.., for Y--~; (1.6) 

Here u, v ,  w, and p a r e ,  r e s p e c t i v e l y ,  t h e  v e l o c i t y  components  a l o n g  t h e  Ox, Oy, Oz axes  and t h e  
pressure (see Fig. i). According to [i0, ii], within the linear statement this system de- 
scribes Tollmien-Schlichting waves in the vicinity of the lower branch of the neutral curve. 
Since nonlinear effects are usually observed below the flow, from the point of view of stabil- 
ity loss (which is equivalent to a frequency increase of eigenoscillations in the scale of 
free interaction theory) it is sufficient to consider the high-frequency limit of the problem. 
In this case the dispersion relation, relating the components of the wave vector (~, ~) with 
the frequency w of eigenoscillations, acquires the simple form 

~(~2+~):~2=~+...  

By direct substitution it can be verified that the triplet of waves with wave vectors 

consists of a resonance triad for any real ~, ~, while the phase velocities of all three waves 
coincide. For this reason it is convenient to use as small parameter g the reciprocal of the 
phase velocity c in the triad: 

8~C -I. 

It follows from the dispersion relation that the spatial disturbance scale is of order 
O(~), and the characteristic time scales as O(e2). Substituting these estimates into system 
(1.1)-(1.7), one obtains the transverse size O(~-:). Since the phase velocity is fixed, the 
critical layer becomes manifested. Its thickness O(~ I/3) is selected in such a manner that 
the effect of viscosity becomes substantial in this case. By similar considerations one 
estimates the thickness of the Stokes layer O(s). Within the linear approximation the high- 
frequency oscillations are primarily neutral, therefore their growth can be determined by 
nonlinear effects even for low amplitudes. In the present study the order of magnitude of 
"slow" time, for which the disturbance growth due to nonlinear interactions is substantial, 
is determined as O(~ 2/3) from the nonstationarity condition of the equations of motion in 
the critical layer. In this case the earlier suggested procedure of deriving weakly non- 
linear evolution equations [3, 4], assuming uniform smallness of nonlinear corrections in 
the whole flow region, cannot be applied directly, and requires a special investigation. 

The considerations given lead to the following structure of scaled independent vari- 
ables: 
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t =(s~to, e~/~t,), x - - c t  = s X ,  z = e Z ,  ( 1 . 8 )  

y =  (sYo, ~- 'Y, ,  s -~ + g : / a } 2 ) .  

The order of magnitude of slow time and the requirement of nonlinear interaction deter- 
mine the characteristic pressure amplitude as O(e*~ To justify this estimate it is ne- 
cessary to know the form of the solution in the vicinity of the critical layer, which will 
be determined below. The solution is represented in the form of an asymptotic power series 
in two small parameters: e~/a and ~2, corresponding to the contributions of the critical and 
boundary layers. For the pressure we have 

Here it has been taken into account that the phase velocity is primarily constant. There- 
fore, the disturbance depends on "fast" time only through X. For the remaining quantities 
the expansions depend on which layer they are related to. 

We investigate initially the region Y~ = O(i), restricted by the first three approxi- 
mations: 

~ = s- ty~ + sl3/3 (u 1 + s4/3u 2 + s2u 3 + . . . ) ,  

~, = ~713(v 1 + ~4/3v~ + ~2v~ + . . .), 

The equations describing the flow in this region are linear. For Y~ = 0 the nonflow condi- 
tions are satisfied in the first and second approximations, while the value of the vertical 
velocity component must be determined within the third approximation from the matching 
condition with the solution in a viscous sublayer Y0 = 0(i). The expressions for the first 
two approximations are written down explicitly 

o-Y = ( r ; -  ~ ) ~ z  ~ 4 o x  ' ~ ,  = - ( r i  - , )  o z '  

== - -  OX ' 

o~u2 t o~R~ t o~R, o"U~ (X, Z, t )  

o x  ~ = ( r  - t )  ~ o z  ~ ~ q  + ( r  - 1) oz"  ~ x  ~- o x  ~ ' 

i OU~- ~"2 = I o2n ~ ~B~ ou{- (Y~ - I ) - 0 X - - ,  

where A = 8~ + 3~, and the superscripts +, - correspond to YI > i, Yz < i. These solutions 
are valid for arbitrary functions Us(X, Z, tl), U+(X, Z, tz). From the conditions at the 
wall (1.5) and at the exterior boundary (1.7) it follows that 

OUo" o I i S  OU~ (~, ~, tl) d~d$. ( 1 . 9 )  
OX = AR~, R1 = - -  K5 ~ [(X - ~)~ + ( Z - -  ~)~]*/i ; 

OU 1 OU~" i ~  0U'I-]- (~' -~" '1) d,.~, d~ (1 .10)  
--oo 

Relations (i.9), (i.i0) are insufficient for unique determination of the functions U~, U~. 
The continuity condition must not be used for Yl = I, since the solution is singular in the 
critical layer. Establishing a unique relationship between the solutions above and below 
the critical layer is possible only following detailed treatment of the latter. Within the 
third approximation it is sufficient to restrict the discussion to terms with lowest powers 

in (YI - I): 
0% 1 02 R a 1 ~R3 
o-7 = ( r ~  - t )  o z 2  + . . . .  w~ - ( r  1 - I )  o z  + . . . .  v3 = - -  A B 3  + . . .  

Besides the appearance of singularities in the critical layer, the solutions constructed do 
not satisfy the adhesion condition (1.4). To satisfy the adhesion condition it is neces- 
sary to construct a solution in the Stokes layer Y0 = O(i); however, it does not primarily 
affect the pressure distribution and is, therefore, not considered. Within the linear ap- 
proximation the presence of a Stokes layer leads to deviation from neutrality of the 
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Tollmien-Schlichting waves considered, while the variable of growth increment is of the 
order of 0(i) (see, for e~maple, [8]). Since it is assumed in the present study that the 
time of nonlinear interaction is of order O(s ~/~) [with the corresponding increment being 
O(s-=/3)], the effect of the Stokes layer can indeed be neglected. 

Starting from the shape of the solution for Y~ = O(i), the asymptotic expansion of the 
velocity in the critical layer can be written down as: 

V = ~7/3(__ AR, @ 34/a~ @ ~2(__ AR3)+ ss/~ut @ , . . ) ,  

= ~(Y, + ~ + ~ + ~ + . . . ) .  

S u b s t i t u t i n g  t h e s e  e x p r e s s i o n s  i n to  ( 1 . 1 ) - ( 1 . 7 ) ,  the  f o l l o w i n g  sys tem of  e q u a t i o n s  i s  oh- 
tained for the first approximation: 

ot~ Y ~  oz ~ 

~ + - b ~  = 0 ,  

The problem ( I . 1 1 )  has a s o l u t i o n  f o r  any 
t i o n  ~, such t h a t  

or~' ot t + Y~-yf" + oZ ox = or--~' 
(1.1:) 

pressure distribution R:. Introducing a new func- 

#-Z = - - u 1 "  a-~=w~, 

the problem (i.ii) can be written down in compact form 

a~ 0~. OR 1 a2~ 
~ + r , ~ x . ~ = o - ~ ,  ~ - ~ o  for r , - ~ .  (1.12) 

For the  second approx imat ion  the  e q u a t i o n s  a c q u i r e  the  form 

~2 ~2 ~ a2R2 a2~ 
~ +  Y ~  + ~ +-~-= or--T' 

a~ a~ 2 a~R2 a~ 2 
at--~ + Y~-g-f" + ~ ---- oy---~2 ' 

~2 ~ - 
0--~ + -~- + =. O, u~-+ U~, w~-+ 0 for Yz ~ oo. 

The given system is solved with the following condition 

u + = u ; ,  

which, with account of (1.9), closes the problem for the pressure in the principal approxima- 
tion 

H i  = - -  ~ R :  ( L  ~, t:) [ (x  - -  :)2 + ( z  - -  ;)211/2 �9 
- - 0 o  

The given integrodifferential equation has the nontrivial solution 

R1---- ~-~ A ( t  l, r exp [i (X cos ~p + Zsinqp)], t{~i}1< oo, (1.14) 

which is represented in the form of a superposition of eigenfunctions 

exp[i(Xcos~ +Zs in~) ]~  

corresponding to Tollmien-Schlichting waves propagating under different angles to the direc- 
tion of the fundamental flow. The evolution law of the amplitude A is determined from the 
solvability conditions of higher approximations. For the third approximation the problem 
is similar to (I.Ii), and is solved for any amplitude distribution A. The wave interaction 
appears in the fourth approximation, in which corrections resulting from the flow nonlinearity 
appear for the first time. The equations governing the fourth approximation functions are 
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a~4 ~ 4  - a~R4 
a-(~ + Y ~ -5-2 + v ~ + a x ~ 

o~, a;, o% 
a t  + Y2-~--+  0--2~---- - - - -  

I 

ax + - ~  + o-~ =~ u4.--~UF, w4--~O for y2--~eo. 

We introduce a new function Q, related to the vorticity in the critical layer: 

Q (X, Z, tx, Y2) ----" Oy~" 

We d i f f e r e n t i a t e  t h e  f i r s t  e q u a t i o n  w i t h  r e s p e c t  t o  X, Y2, t h e  second w i t h  r e s p e c t  to  Z, 
Y2, add them, and w i t h  a c c o u n t  o f  t h e  c o n t i n u i t y  e q u a t i o n  t h e  sys t em ( 1 . 1 5 )  i s  r educed  to  a 
problem f o r  t h e  f u n c t i o n  Q 

OQ OQ O2Q Q ~ O  for Y ~ o o  a~ + r~ ~ + q (x z, t~, r~) = ~ ,  

q='2o-~2 Lar- ~.v ~oz~,w j-(~-eT) [~z ~ ox ~xA~-J; 
§ 

f edr  = 
- - oo  

and (1.17)  one obtains the problem fo r  the second approximation of the From (1.9), (i.i0), 
pressure function 

(l.iS) 

( i . i 6 )  

(1.17) 

;i [ +; ] O - i  OR 
t d~d~ ,AR~ § Ay-EL+ QdY2 �9 (1.18) 

R~ - -  2n [~x - ~)2 j ( z  - Oz] 1/'~ ~" 
- - o o  - - o o  

Equation (1.18) is similar to Eq. (1.13) for the principal approximation, but containing a 
right-hand side, and consequently it is solved under the orthogonality condition of the right- 
hand side to all eigenfunctions of problem (1.13): 

+ ~j QdY~ e x p [ i ( X c o s ? + Z s i n ~ ) l d X d Z = O .  (1 .19 )  A-b-~- 1 

The set (i.12), (i.16), (1.19) makes it possible to determine the time evolution of the 
amplitude A(h, 9) from (1.14). We consider the given system in more detail. 

2. At the start we note that, generally speaking, this system must be supplemented 
by initial conditions for T0, %, A 0 at some initial moment of time t~. We are interested 
in the behavior of the solution at long times, when the initial conditions have been "for- 
gotten." Formally this is achieved for t~ § -~. The solutions for the functions T, Q can 
then be sought in the form of expansions in the eigenoscillations 

~ =  ~ B( t r  Y2 ,~ )exp[ i (Xc6s~+Zs in~) ] ;  ( 2 . 1 )  

Q =  ~- C ( t v ) ' 2 , ~ ) e x p [ i ( X c ~  Zsin~)]+Q~" ( 2 . 2 )  

The function C in the representation (2.2) was selected in such a manner that the residual 
QI satisfied identically the orthogonality conditions (1.19). We thus obtain the transition 
from the system (1.12), (1.16), (1.19) to the equations for the amplitudes A, B, C (all sub- 
scripts are omitted) 

OB OZB (2.3) a--i- + iYcos~B + i sin ~A = ay z ; 

oC 3 a (B+B_) "V~ 0 2 (A+B_  -= B+A_)  asC ( 2 . 4 )  
aY + iY cos ~C -[ 2 oY ~- 2 ay ~ = oy I ; 

an at + / c o s y  C d Y = O ,  C,B---~O for Y--~oo, ( 2 . 5 )  
- - o o  
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where Ae  = A t, ~ ~+.-~-]; B !  = B t, Y, q~ +__ . As a result A(t, ~)depends  only on A(t. ~ - + n / 3 ) ;  

c o n s e q u e n t l y ,  s i x  waves  a r e  m u t u a l l y  d e p e n d e n t  ( f o r  any  f i x e d  ~p) 

A t , q ~ + - -  E ,  k = 0 , 1  . . . . .  5. 

T a k i n g  i n t o  a c c o u n t  t h a t  t h e  p r e s s u r e  i s  a r e a l  f u n c t i o n ,  i . e . ,  A ( ~ + n ) = A * ( ~ ) ,  t h e  number  
of related components is three. And the general solution of system (2.3)-(2.5) is decomposed 
into separate triads not interacting with each other. 

Consider the isolated triad 

Without loss of generality one can put I ~ o l < ~ - .  We note that the solution of the Cauchy 
p r o b l e m  

i s  

o~ ~ i Y  cos ~ = ~ u [~=0 = 6 (Y -- Y') 

With its help one 

t 

y ,,' exp[ ,'] c = - _ =  V~- -~_ t ,  ) - y  - ).~ 

An explicit expression for 

3 0 (B§ ]/~ s (A.s - 8+A_) 
q = z o r  )- "2 

is obtained by substituting the solution for B. 
the critical layer, from (2.5) we find 
evolution equations : 

tacos2 (p ] 
u = V~_~7t exp (Y "4tY')'2 ~i cos q~t (Y ~, Y') ........ 12 " 

c an  f i n d  t h e  s o l u t i o n  o f  Eqs .  ( 2 . 3 ) ,  ( 2 . 4 ) :  

t 

f e x p [  - -  (Y--Y')~-4-t 2i c~ + Y')]q(t" Y "  (P) dY' '  
- - o o  

Oy 2 

I n t e g r a t i n g  t h e n  
the integral sought, which 

the expression for C across 
is required to construct the 

• t",q) + 3 )  K:(%t,t ' , t")2n6(tcosq~__ \ 

-boo t t t ~' 

--oo --0o --oo --oo 

"/K o (% t. t'. t", t '~ ) 2.~6 t cos c o - -  ~ cos ~ 7 y }  - -  cos ~ - -  + 

t t '  

--oo --~o 

t t' 

( 2 . 6 )  

The expressions for the smooth kernels K0, KI, K 2 are 

~cos~ff--t'p ~-cos~ _ _ i = --t"p], 
K i = - 5 _  t c o s  _ t 2 /  ~ 
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For ~=~0 (by the condition imposed I~0]<~) the 6-function in expression (2.6) vanishes 
almost everywhere, and 

+~ 

I CdY = O. 

From Eq. (2.5) it then follows directly that 

A (t, ~o) = A~ = r 

i.e., other waves do not affect the ~0-component of the triad. As a result the equations 
for the two remaining components are linearized and, since there is no explicit t dependence 
in the original equations, their amplitudes are written in the form 

A t , ~  0 +  = a + e x p ( ~ t ) , A  t , ~ o - - -  ~- 

I n  p r i n c i p l e ,  by s u b s t i t u t i n g  i n t o  t h e  s y s t e m  ( 2 . 5 ) ,  ( 2 . 6 )  one can  o b t a i n  a d i s p e r s i o n  r e -  
l a t i o n  f o r  ~ and f o r  t h e  e i g e n v e c t o r  ( a+ ,  a_)  f o r  any  ~0 in  t h e  r e g i o n  (--~/6,  ~ / 6 ) .  For  t h e  
purpose of qualitative analysis, however, one can confine the discussion to the most impor- 
tant and simplest case ~0 =0, i.e., the excitation of subharmonics of a Tollmien-Schlichting 
plan e wave. For this triad substitution of the solutions in the form (2.7) into Eqs. (2.5), 
(2.6) ! gives 

3~i �9 3~ Ao [ (~,) a~, 
~a+ = ~- AoI (~) a _ ,  ~*a_  - -  8 ( 2 . 8 )  

+~ 
1 

0 

From t h e  s o l v a b i l i t y  c o n d i t i o n  o f  s y s t e m  ( 2 . 8 )  w i t h  r e s p e c t  t o  t h e  v e c t o r  ( a+ ,  a_)  a r e l a t i o n  
i s  o b t a i n e d  f o r  t h e  g r o w t h  r a t e  X as  a f u n c t i o n  o f  t h e  a m p l i t u d e  o f  t h e  t w o - d i m e n s i o n a l  wave 

A0: 

~ 2 +  iAol2p(~) = 0. ( 2 . 9 )  

The given relation makes it possible to determine the condition of subharmonic disturbances 
for a given amplitude of a two-dimensional wave. We investigate the behavior of the growth 
rate ~ in the limiting cases of large and small amplitudes. For the root with a positive 

real part we have 

for  [Aot -~ 0 s = ~i(3~/2)IA0] + n2(3/4)*/3F (t/3)IAol e + . . . .  

for ]Aol ~ ~ ~ = exp(ik~/8) (3~/32)~/*lA011/*+..., k =  •  ~3 .  

As for roots with negative real parts, since their solutions are damped they are of no in- 

terest for this analysis. 

In conclusion we summarize the basic results obtained. 

i. For sufficiently low amplitudes the general solution of the problem of nonlinear 
interaction of eigenoscillations within the statement "without initial conditions" is de- 
composed into isolated triads, evolving independently of each other. 

2. For the triad component, whose direction of propagation is overall near the basic 
flow direction, there is no effect of other components on each other within the approxima- 
tions considered, and consequently its behavior depends weakly on the behavior of the other 
components. This behavior is in agreement with experiments [i], in which the amplitude of 
two-dimensional Tollmien-Schlichting waves was practically unchanged, even when the ampli- 
tude of subharmonics exceeded it by more than twice. 

3. The equations describing wave evolution are integrodifferential, so that the local 
growth rate is determined by the whole preceding history of disturbance evolution. As an 
example we write down the problem for ~0=0: 
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dA~ -- O, 
dt 

t 

dA + 3:ti A *-- - -  - -  t') ~ dt = - g -  .f A.(t ' )  (2t' t)(t - e x p ( - - + ( t - - t ' @ d t ' ,  
- - o o  

t 

dA_d, : - - T 3 a '  I A o < t " A ~ ( 2 t ' - - t ) ( t - - t ' ) 2 e x p ( - - + ( t - - t ' ) a ) d t ' "  
- - o o  

Here  A 0 i s  t h e  a m p l i t u d e  o f  t h e  t w o - d i m e n s i o n a l  wave,  and A+ _ a r e  t h e  a m p l i t u d e s  o f  waves 
p r o p a g a t i n g  a t  a n g e l s  _+7/3 t o  t h e  f u n d a m e n t a l  f l o w .  The s o l u t i o n  i s  o f  t h e  form ( 2 . 7 )  w i t h  
t h e  g rowth  e x p o n e n t  t a k e n  f rom ( 2 . 9 ) .  

The s t a t e m e n t  o f  t h e  p rob l em was s u g g e s t e d  by P r o f .  V. N. Z h i g u l e v .  The a u t h o r  i s  
g r a t e f u l  t o  V. N. Z h i g u l e v ,  A. V. F e d o r o v ,  and t h e  r e f e r e e s  o f  t h i s  a r t i c l e  f o r  u s e f u l  com- 
ments  and a d d i t i o n a l  m a t e r i a l s .  
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